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ABSTRACT

Time series simulation is an important tool for developing and testing new signal processing algorithms for

weather radar. The methods for simulating time series data have not changedmuch over the last few decades,

but recent advances in computing technology call for new methods. It would seem that faster computers

would make better-performing simulators less necessary, but improved technology has made comprehensive,

multiday simulations feasible. Even a relatively minor performance improvement can significantly shorten

the time of one of these multiday simulations. Current simulators can also be inaccurate for some sets of

parameters, especially narrow spectrum widths. In this paper, three new modifications to the conventional

simulators are introduced to improve accuracy and performance. Two of the modifications use thresholds to

optimize both the total number of samples and the number of random variates that need to be simulated. The

third modification uses an alternative method for implementing the inverse Fourier transform. These new

modifications lead to fast versions of the simulators that accurately match the desired autocorrelation and

spectrum for a wide variety of signal parameters. Additional recommendations for using single-precision

values and graphical processing units are also suggested.

1. Introduction

Time series simulation plays an important role in de-

veloping new weather radar signal processing algo-

rithms. Having simulated data that accurately represent

the weather signal characteristics is essential. In this

paper, a few modifications to conventional simulators

will be introduced to improve both accuracy and perfor-

mance. The focus will be on simulating single-polarization

weather radar data using a Gaussian spectral model for

the weather (or ground clutter) signal. Although this

model does not always hold for weather signals (Janssen

andVanDer Spek 1985; Yu et al. 2009), it is the standard

for weather radar simulations and is a reasonable start-

ing point when assessing algorithm performance. The

approaches described in this work do not require a

Gaussian spectrum model and should be able to be ap-

plied to other models with some modification. Although

the focus of this paper is on single-polarization time

series data, two realizations of single-polarization time

series data can always be combined using an approach

such as the one found in Galati and Pavan (1995).

These time series simulations serve a very specific

purpose for radar engineers who are developing new

weather radar variable estimators and testing algo-

rithms. A realization of simulated time series data per

channel represents the radar return from a particular

resolution volume. The number of samples in the time

series directly corresponds to the number of pulses

transmitted during the dwell time for a pulsed-Doppler

radar. It is common to simulate a large number of re-

alizations with the same signal parameters to test the

performance of a particular signal processing technique.

Each realization is from a complex, stationary, Gaussian

random process, and theGaussian model is a reasonable

choice for representing the combined signal from a large

group of hydrometeors. By varying the signal parameters, a

comprehensive analysis of the overall performance of

the technique can be carried out. Even though the ac-

tual time series from a weather radar does not always

match the Gaussian spectral model, the model is still the

standard method for simulating time series data for testing

signal processing algorithms. There are also cases where

only one or two realizations (two for dual-polarization

signals) are simulated for a resolution volume, especially

when simulating a realistic weather profile. The simu-

lator approaches described in this paper will not beCorresponding author: Christopher Curtis, chris.curtis@noaa.gov
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significantly faster for a single realization, but they

should result in a more accurate realization for some

sets of signal parameters. There is a discussion later

about which simulator may be slightly faster in this

particular case.

There are two main types of time series simulators

used for simulating radar weather data corresponding

to a particular resolution volume, and they are very

closely related. The most well-known example of the

first type can be found in Zrnić (1975), although similar

methods were introduced around the same time, such as

the one described by Thompson (1973). Themain idea is

to start with the desired power spectral density (taking

into account spectral aliasing if necessary). Next, mul-

tiply the amplitude spectrum (the square root of the

power spectral density) times an appropriate set of

random numbers. Finally, use an inverse discrete

Fourier transform (DFT) to produce a time series re-

alization. The inverse DFT is commonly implemented

using an inverse fast Fourier transform (FFT) for effi-

ciency. This type of simulator will be called spectral

(SP), since the time series depends on the desired power

spectral density. The second main type of time series

simulator depends on the desired autocorrelation func-

tion, called autocorrelation (AC). The simulation steps

are similar to the spectral simulator except that the

power spectral density is produced by calculating the

discrete Fourier transform of the autocorrelation func-

tion. An example of this type of simulator was described

by Frehlich and Yadlowsky (1994), and an earlier

example that was used to study hydrological and geo-

physical time series was mentioned in Davies and Harte

(1987). There are subtle differences in the two ap-

proaches, and they will be compared in more detail in

section 3.

The current simulation methods have served us well

for the past few decades, so one might wonder if new

approaches are truly needed. With the advent of faster

computers, thousands or millions of realizations can be

produced in a short amount of time, but simulations that

test a wide range of weather (and sometimes ground

clutter) signal characteristics can take several hours or

even several days. Improving performance can have a

significant effect on these multihour or multiday simula-

tion runs. There are also cases where weather signals

with narrow spectrum widths (e.g., simulations of ground

clutter data) can lead to significant errors when fixed

simulation lengths are utilized. Figure 1 shows the mag-

nitude in decibels (dB) of the calculated ensemble av-

erage of the autocorrelation functions for the SP andAC

simulators compared to the desired, unbiased autocor-

relation function. Both autocorrelation functions were

computed using 100 000 realizations with a spectrum

width sy of 0.5m s21 for the top panel and 4ms21 for the

bottom panel, both with a maximum unambiguous ve-

locity ya 5 32m s21. The normalized autocorrelation is

used to clearly show the level of the autocorrelation

below the peak; thus, the absolute simulated power does

not affect the results and is not included as a simulation

FIG. 1. Normalized autocorrelations computed from an average

of 100 000 realizations of the fixed-simulation-length versions of

the SP andAC simulators. The desired autocorrelation is shown for

comparison. HereM5 16, and ya 5 32m s21. The spectrum width

for the top panel is 0.5m s21 and for the bottom panel is 4m s21.
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parameter throughout. The desired number of simu-

lated samples or sample lengthM is 16.When simulating

pulsed-Doppler radar data, M is also the number of

pulses. A simulation (or FFT) length of 3M 5 48 was

used for the SP simulator, and a simulation length of

2M 5 32 was used for the AC simulator. This is the

number of samples simulated to produce a single re-

alization, but onlyM samples are returned. Zrnić (1975)

mentions that additional correlation can be produced

because of the finite window (simulation length), but a

specific simulation length was not recommended. The

factor of 3 used here was based on a later paper by

Sachidananda and Zrnić (1999). Frehlich and Yadlowsky

(1994) state that a simulation length of 2M is required,

but they also say that the simulation length must be long

enough to ensure that the spectrum is positive. Even

though different fixed simulation lengths may be used,

these values seem to be common in actual im-

plementations and clearly illustrate the effects of in-

sufficient simulation length. Some additional comparisons

will be made using the same fixed simulation length for

both the SP and AC versions to illustrate fundamental

differences in the two types of simulators.

For the narrower spectrum width of 0.5m s21, both of

the simulators have significant departures from the de-

sired autocorrelation function. This is a relatively nar-

row spectrum width but not excessively so. It could be

used when simulating ground clutter or when testing a

spectrum width estimator at narrow spectrum width

values. The SP simulator shows the effects of additional

correlation, but the AC simulator shows significantly

reduced correlation. The most likely explanation for the

reduced correlation is the truncation of the autocorre-

lation function. Both of the simulators perform well for

the 4ms21 spectrum width, but they do depart from the

autocorrelation function below about 20 dB. This be-

havior is common for these simulators even when the

signal-to-noise ratio is high (100 dB in this case). It

seems like the autocorrelation function is faithfully

simulated only down to approximately 20–25 dB below

its peak in all of the cases that were examined. To ad-

dress these issues with fixed simulation lengths, the

simulation length could be extended on an ad hoc basis

for narrower spectrum widths, but an approach for

finding the appropriate simulation length based on the

simulated signal parameters is suggested. This can lead

to longer simulation lengths for narrow spectrum widths

but also shorter simulation lengths for wider spectrum

widths. The key is to find the shortest possible simula-

tion length while still accurately simulating the time

series data.

Matching the autocorrelation is one important way to

measure the accuracy of a time series simulator, but

another is accurately matching the power spectral den-

sity (PSD). The computed PSD depends on several

factors, including the signal-to-noise ratio (SNR) and

the window applied to the time series. An SNRof 100 dB

was utilized for these simulations because it is similar to

the maximum dynamic range of current weather sur-

veillance radars. To compute the PSD from the simu-

lated time series, a Chebyshev window with 150-dB

sidelobes was used. An aggressive window such as this

one clearly shows the shape of the spectrum all the way

down to the noise. Figure 2 shows the magnitude in

decibels of the PSD for the SP and AC simulators

compared to the desired PSD. The simulation parame-

ters are identical to those used for Fig. 1. In fact, the

same time series data were used to estimate the mean of

both the autocorrelation and the PSD. The simulated

velocity is 0m s21, which results in a centered spectral

peak. Since changing the velocity just shifts the

spectrum, a simulated velocity of 0m s21 will be used for

all of the simulations in the paper. The desired PSD is

the sum of the theoretical, windowed Gaussian spectrum

and an appropriately scaled white noise spectrum, which

incorporates the effects of added noise. The windowed

Gaussian spectrum is computed by multiplying the

theoretical Gaussian autocorrelation by the autocorre-

lation function of the window and then transforming to

the spectral domain using the DFT. For the narrower

spectrum width of 0.5m s21, the simulation length for

the SP simulator (3M5 48) is sufficient to visibly match

the PSD. The AC simulator does not match the spec-

trum below about220dB. This is an effect of truncating

the autocorrelation function and will be discussed in

more detail in section 3. Both simulators match the PSD

well when sy 5 4m s21; significant mismatches tend to

occur only at narrow spectrum widths. The goal of this

paper is to find versions of the simulators that are both

accurate and efficient for a wide range of simulation

parameters. Accuracy is the primary objective, since

inaccurate simulators can lead to faulty conclusions, but

maximizing efficiency while maintaining accuracy is

also a major objective.

The rest of the paper is structured as follows. The

modifications for improving the accuracy and perfor-

mance of these types of time series simulators are de-

scribed in section 2. The differences between the

spectral and autocorrelation simulators, including the

AC spectrum mismatch from Fig. 2, are discussed in

section 3. The new versions of the simulators are vali-

dated in section 4 using comparisons to the original

fixed-simulation-length versions. Additional consider-

ations such as using single-precision and graphical pro-

cessing units are addressed in section 5 with section 6

containing conclusions.
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2. Three simulator modifications to improve
accuracy and performance

The first modification to improve accuracy and per-

formance of time series simulators was mentioned in the

introduction. Setting the simulation length based on the

spectrum width (and maximum unambiguous velocity)

leads to more accurate simulators and can also lead to

better performance. This modification is described first,

but before that a slightly more detailed outline of the

steps for the conventional simulators is introduced to

better show how the new modifications fit into the

existing simulator framework.

As described earlier, both the spectrum and autocor-

relation simulators are similar except for how the de-

sired model spectrum is calculated. Here is a procedure

for both simulators with step 2-SP used for the SP sim-

ulator and step 2-AC for the AC simulator.

Inputs: desired number of samples M, signal power

SdB (dB), radial velocity y, spectrum width sy, SNR

(if noise added), maximum unambiguous velocity

ya, and number of realizations R

1) Determine the simulation length MS (fixed or

parameter based).

2-SP) Calculate the spectrum directly using a for-

mula or other method. Compute spectrum values on

an extended Nyquist cointerval (from 2nya to nya),

where n is an integer factor (usually 3 or 4). Alias the

extended spectrum to produce a spectrum on the

desired Nyquist cointerval (from 2ya to ya).

2-AC) Compute the length–MS, conjugate sym-

metric autocorrelation function, using a formula.

Calculate the DFT of the autocorrelation to produce

the aliased spectrum.

3) Appropriately scale the spectrum (PSD) to

obtain the desired signal power and to adjust for the

power of the simulated white noise in step 4. Take the

square root of the PSD to produce the amplitude

spectrum (frequency response).

4) Simulate white noise to match the simulation

length MS and the desired number of realizations R.

Multiply each realization of simulated noise by the

amplitude spectrum.

5) Perform an inverse DFT (often with an efficient

FFT algorithm) for all of the realizations to transform

from the frequency domain to the time domain.

6) Return the firstM samples from theMS simulated

samples to form an M 3 R matrix of time series data.

7) Add the desired level of white noise if necessary.

Output: V (M 3 R matrix of time series data)

The first step is to determine the simulation lengthMS,

and a new parameter-based approach for determining it

is introduced next. The rest of the steps follow the

standard simulation technique (with some minor changes)

that have been described by Zrnić (1975), by Frehlich and

Yadlowsky (1994), and also by Galati and Pavan (1995)

when describing their fast convolution generator. The

second modification for improving simulator performance

is an additional thresholding step introduced between

FIG. 2. Normalized PSDs computed from the average of 100 000

realizations of the fixed-simulation-length versions of the SP and

AC simulators. The desired PSD is shown for comparison. The

simulation parameters are the same as Fig. 1.
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steps 2 and 3, and the third modification replaces steps

4–6 with an alternative method for computing the in-

verse DFT. These changes to the simulator structure are

relatively minimal, and the focus of these modifications

is to keep the basic structure of the simulator (one in-

dependent realization of time series data produced for

each simulated realization) unchanged.

a. Determining the simulation length

As discussed in the introduction, fixed simulation

lengths of 2M and 3M have been used in the past and

work reasonably well in most situations, but there are

cases where these fixed simulation lengths are not suf-

ficient (especially with narrow spectrum widths) and

other situations where shorter simulation lengths could

be employed to improve performance. The behavior of

the autocorrelation in the bottom panel of Fig. 1 (sy 5
4ms21) suggests a possible approach to determining the

simulation length. Since the autocorrelation is simulated

consistently only to 20–25 dB below the peak, a thresh-

old could be used to aid in determining the simulation

length while also taking into account the circular con-

volution properties of the inverse DFT.

To better understand the effect of simulation length

on the autocorrelation, we can look at some different

simulation lengths other than those used in the bottom

panel of Fig. 1. The SP simulator will be used exclusively

in this section because of the mismatch between the AC

simulator spectrum and the desired spectrum in Fig. 2;

this mismatch issue will be addressed in section 3. With

the same simulation parameters used in the bottom

panel of Fig. 1 (M5 16, ya5 32ms21, and sy 5 4ms21),

Fig. 3 shows calculated autocorrelations forMS5 16, 25,

and 32 using the SP simulator. The MS 5 M 5 16 case

clearly illustrates the problem with using too short of a

simulation length. By multiplying by the spectrum in the

frequency domain and performing an inverse DFT, the

simulated noise samples are being filtered in the time

domain. Because this is implemented with a DFT, the

filtering is a circular convolution and the filter aliases or

wraps around. This results in the magnitude of the au-

tocorrelation at lag 1 being equal to the magnitude at

lag 21 (or lag 15 when MS 5 M 5 16), and this extends

to other lags, causing the values for lags 8–14 to be larger

than the desired autocorrelation. We propose to set MS

just long enough to avoid the aliasing from the filter but

as short as possible for efficiency.

This aliasing effect would not necessarily cause

problems when simulating data if the larger autocorre-

lation lags were not calculated from the time series data,

but the goal of the new simulators is to accurately match

the autocorrelation at all lags in addition tomatching the

PSD. In the future, these higher lags could be used by a

new estimator, or the additional correlation could affect

estimator results. TheMS5 2M5 32 case shows that for

these parameters, a simulation length of 2M seems to be

sufficient to accurately match the autocorrelation, but a

shorter simulation length betweenM and 2M could also

be sufficient. Finding this value will lead to a general

procedure for choosing the simulation length.

For the simulation parameters in Fig. 3, the desired

autocorrelation drops at least 25 dB below the peak at

lag 9. As mentioned previously, the autocorrelation is

not measured accurately this far below the peak. The

simulation length needs to be increased so that the ali-

asing from the circular convolution does not affect the

lags from 8 to 15. Because the magnitude of the auto-

correlation is symmetric, the magnitude of the auto-

correlation at lag 9 equals the magnitude at lag 29. For

MS5M5 16, the autocorrelation at lag29 aliases to lag

7 5 16 2 9; this is what causes the undesired autocor-

relation values from lags 8 to 15 but also does not seem

to affect the value of the correlation at lag 7. If we in-

crease MS to 25, then the autocorrelation at lag 29 ali-

ases to lag 155 252 95M2 1. Since the magnitude of

the autocorrelation is 25 dB below the peak, it should

not measurably affect the autocorrelation at lag 15. As

shown in Fig. 3, the calculated autocorrelation forMS 5
25 is very similar to the calculated autocorrelation for

FIG. 3. Normalized autocorrelations computed from the average

of 100 000 realizations of the fixed-simulation-length version of the

SP simulator. HereM5 16, and ya5 32m s21. The spectrumwidth

is 4m s21, and results for three simulation lengths are shown: 16, 25,

and 32.
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MS 5 2M 5 32. By using a threshold on the autocorre-

lation (e.g., 25 dB below the peak), the simulation length

can be determined so that it is large enough to accurately

match the desired autocorrelation but also as small as

possible to make the simulator as efficient as possible.

The next step is to formalize the process for a signal with

a Gaussian spectrum (and a Gaussian autocorrelation).

For the Gaussian case, the autocorrelation function

is a closed form expression, so the lag at which the

magnitude of the autocorrelation falls below a particular

threshold can be solved for directly. The normalized

autocorrelation is used to simplify the calculation and is

given as

a5 exp

"
2
1

2

�
ps

y
t

y
a

�2
#
, (1)

where a is the magnitude of the normalized autocorrela-

tion, sy is the spectrum width, ya is the maximum un-

ambiguous velocity, and t is a real number corresponding

to the lag. There is no velocity in the equation because the

velocity affects the phase but not the magnitude of the

autocorrelation. The autocorrelation threshold AT is a

positive value (dB) that measures the drop in the magni-

tude of the autocorrelation below the peak. If the auto-

correlation magnitude is set to this threshold, a5 102AT /10,

then the equation can be solved for t as follows:

t5
y
a

ps
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22loga

p
5

y
a

ps
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log(10)

5
A

T

r
, (2)

where ‘‘log’’ is the natural logarithm. Since we need the

first integer lag such that the autocorrelation magnitude

falls below the threshold, we can set

k5 ceil(t)5 ceil

"
y
a

ps
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log(10)

5
A

T

r #
, (3)

where ‘‘ceil’’ is the ceiling function. For the parameters

in Fig. 3 (M 5 16, ya 5 32ms21, sy 5 4ms21) and an

autocorrelation threshold ofAT5 25dB, k5 9 using (3),

which matches the lag from the earlier discussion. In this

case, the simulation length MS is set to M 1 k. This re-

sults in the value MS 5 M 1 k 5 16 1 9 5 25 that was

found informally earlier. This process can also be visu-

alized in the drawing in Fig. 4. The portion of the au-

tocorrelation function that is above the autocorrelation

threshold is shown at the top and has length 2k 1 1; the

boxes represent the samples of the autocorrelation

function from lags 2k to k. The circle on the left of the

middle portion of the drawing illustrates this case. If we

are using M samples from the circular convolution to

form the realization, then there needs to be at least k

samples between the two ends of the realization to en-

sure that the larger autocorrelation values do not alias.

This leads to a minimum value of M 1 k for MS.

There are a couple of other situations that can affect

the determination of MS. The first is straightforward

and is related to the number of autocorrelation values

above the threshold. The circle on the right of themiddle

part of the drawing shows that MS also needs to be at

least 2k 1 1 so that the autocorrelation does not wrap

around and result in larger-than-expected autocorrela-

tion values. Given a particular k computed fromAT, the

simulation length should be set to the larger of 2k 1 1

and M 1 k.

The previous computations assume that the autocor-

relation falls below the threshold before lag M 2 1.

There is another case that needs to be considered

when the autocorrelation is still above the threshold at

lag M 2 1. This normally occurs at narrower spectrum

widths. Figure 5 illustrates this situation using the same

parameters used in the top part of Fig. 1 (M 5 16, ya 5
32m s21, sy 5 0.5m s21) but with different simulation

lengths. In this case, the magnitude of the desired au-

tocorrelation is less than 1.5 dB below the peak at lag

M 2 1. As shown in Fig. 1, the autocorrelation does not

match whenMS5 2M5 32. TheMS calculated using the

autocorrelation threshold AT 5 25dB is 141, and the

result closely matches the desired autocorrelation as

expected. But, the computed autocorrelation using a

simulation length of MS 5 95 is also illustrated in the

figure and seems to match just as well as MS 5 141.

FIG. 4. Drawing showing (top) the length of the autocorrelation

function with the portion of the autocorrelation function that is

above AT and (middle) the effects of circular convolution. The

simulation length is either 2k 1 1 or M 1 k, whichever is larger.
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When the autocorrelation does not fall off quickly at lag

M2 1, the autocorrelation threshold can be set to 10dB

below this autocorrelation value instead of 25 dB below

the peak.

The autocorrelation is still aliasing in this case, but the

values are at least 10 dB below the value at lag M 2 1.

The effect of the aliasing is negligible, so the simulation

is still accurate, but it saves a significant amount of time

when simulating weather signals with narrow spectrum

widths. This 10-dB threshold was found by testing the

simulator with a wide variety of parameters and is vali-

dated as part of section 4. The formula for computingAT

in this case is based on the magnitude of the normalized

autocorrelation from (1):

A
T
5 102 10log

10

�
exp

�
2
1

2

�
ps

y
(M2 1)

y
a

�2��

5 101
5

log(10)

�
ps

y
(M2 1)

y
a

�2
, (4)

where ‘‘log10’’ is the base-10 logarithm, and ‘‘exp’’ is the

base of the natural logarithm. Before determining MS,

the autocorrelation threshold AT is chosen as the mini-

mum of the result of (4) and the fixed value of 25 dB

discussed earlier.

This leads to an algorithm for choosing MS that can

replace step 1 of the generic simulator procedure given

earlier:

1) Set the simulation length MS 5max(2k1 1, M1 k),

where

k5 ceil

"
y
a

ps
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log(10)

5
A

T

r #
.

The autocorrelation threshold is calculated as

A
T
5min

�
25, 101

5

log(10)

�
ps

y
(M2 1)

y
a

�2�
,

for a Gaussian spectral model.

This leads to an MS that is long enough to accurately

match the autocorrelation but that can also be shorter

than a fixed simulation length in some cases. This en-

sures that the simulator is accurate and also faster than

the fixed-simulation-length simulator when feasible.

This discussion has focused on determiningMS based on

the autocorrelation rather than the PSD. From the

bottom panels of Figs. 1 and 2, it seems that the auto-

correlation is more sensitive to simulation length than

the PSD. This ends up being true over a wide set of

parameters and will be confirmed in section 4.

b. Adding a spectral threshold

The second approach for improving the performance

of the SP and AC simulators can be thought of as

extending the threshold idea from the autocorrelation

domain to the spectral domain. The calculation of the

PSD is different from the autocorrelation because it can

be computed accurately much farther below the peak of

the spectrum (especially when calculating the ensemble

average). At first, this would seem to preclude the use

of a threshold similar to the autocorrelation threshold,

but there are practical effects that are also involved. A

radar system has a particular dynamic range that ensures

that the spectrum can be accurately computed only

down to the system noise level. We can take this dy-

namic range into account and set a threshold that is

based on the highest expected SNR. As mentioned

earlier, a maximum SNR of 100 dB will be used

throughout the paper to explore threshold levels, but the

conclusions could be applied to simulations with other

SNR values (or for simulating systems with higher or

lower dynamic ranges).

Another way to understand the motivation for this

threshold is to look at an example. Figure 6 shows the

desired PSD computed without additive noise along

with a PSD computed from 100 000 realizations of the

FIG. 5. Normalized autocorrelations computed from an

average of 100 000 realizations of the fixed-simulation-length

version of the SP simulator. Here M 5 16, and ya 5 32 m s21.

The spectrum width is 4 m s21, and results for three simula-

tion lengths are shown: 48, 95, and 141.
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SP simulation with an SNR of 100dB and a Chebyshev

window with sidelobes at 2150dB. The spectrum is

normalized to the peak of the weather portion of the

spectrum, which causes the noise level to show up at a

value below 100dB. If the weather spectrum were com-

pletely flat, then the noise level would show up at the

expected value. The other simulation parameters are

M 5 16, ya 5 32ms21, and sy 5 2ms21. The simulation

length MS is 82 and was computed using the procedure

introduced in the previous subsection. The point of this

figure is to show that using the whole amplitude spectrum

when multiplying by the simulated noise (as in step 4 of

the simulator outline) is not necessary. In this case, the

part of the spectrum below about 110dB is not going to

affect the simulated PSD. The spectrum could be

thresholded using a spectral threshold ST to keep only the

part of the PSD that is necessary for accuracy. The values

of the PSD that are not needed could be set to zero, but

there is also no reason to simulate noise values that are

only going to be multiplied by zero. If only the nonzero

part of the amplitude spectrum (computed from the de-

sired PSD) is used, then a significant amount of time can

be saved in some cases by simulating fewer than the MS

samples of white noise for each realization. This change is

especially effective for narrower spectrum widths.

As with the autocorrelation threshold, the issue is

what value should be used for the spectral threshold. It

depends on the desired SNR, the normalized spectrum

width (syn 5sy/2ya), and the window being used to

calculate the PSD. There is also a weak dependence on

M. Because of the dependence on the window, different

thresholds could be calculated if the windowwas known,

but we chose to use a simple threshold that is valid for a

wide variety of spectrum widths and windows. Not only

does the first sidelobe level of the window affect the

threshold value but also the sidelobe rolloff. Through

inspection of many sets of simulation parameters, a

reasonable rule of thumb seems to be setting the spectral

threshold to a value 35dB greater than the desired SNR.

Determining the threshold based on both the spectrum

width and window might improve performance mar-

ginally, but the simple threshold based on the SNR gives

most of the benefit without knowledge of the window.

That is part of the reason that a Chebyshev window with

150-dB sidelobes is used to calculate the PSD; this is an

aggressive window that should reveal as much of the

spectrum as possible with a simulation SNR of 100 dB.

Setting ST 5 SNR 1 35 will lead to additional nonzero

spectrum values for some parameter and window

choices, but it should ensure that the expected value of

the PSD matches the desired PSD in all but the most

extreme cases. There are also cases where the spectrum

width is wide enough that none of the spectrum will be

thresholded. Setting ST5 SNR1 35 seems to be the best

choice if only one value is to be used.

To see the results of using different thresholds, Fig. 7

shows the calculated PSDs using the same parameters

from Fig. 6, but it also includes results from the SP

simulator using two different spectral threshold values:

25 and 135 dB. Only half of the spectrum is shown to

make the results easier to observe. All of the spectra

level off around2110 dB like the simulated spectrum in

Fig. 6 because of the added noise and the normalization.

For the recommended value of ST 5 SNR 1 35 5
135 dB, the simulated PSD matches the desired spec-

trum just as well as the nonthresholded version. For

ST 5 25 dB, the PSD matches closely down to around

25dB below the peak and drops off more quickly after

that. This value would be sufficient if no window were

used when processing the simulated data, but the spec-

trum clearly does not match when a more tapered (i.e.,

more aggressive) window is employed.One possible way

to further improve the runtime of the simulator would

be to try to set the spectral threshold to the smallest

value possible depending on the simulation parameters.

To get an idea of the effect, the relative runtimes for the

two thresholded versions with respect to the non-

thresholded version are as follows: 1.40 times faster for

ST 5 135dB and 1.83 times faster for ST 5 25dB with

50 000 realizations. A significant amount of the time

reduction is achieved using the more conservative

threshold, but there are additional time savings using a

smaller value. The current recommendation is to set

ST 5 SNR 1 35 to avoid inadvertently using a value

that is insufficient. This is a conservative choice, and

FIG. 6. Normalized PSD computed from an average of 100 000

realizations of the fixed-simulation-length version of the SP simu-

lator. The desired PSD is computed assuming no noise is present.
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additional time savings can be realized if the particular

window and spectrum width are taken into account.

This new step can be captured in the simulator outline

by adding a step between steps 2 and 3 (referred to as

step 2.5):

2.5) If the SNR is defined, then set ST 5 SNR 1 35;

otherwise, set ST to a default value (e.g., 135dB).

Set all values in the spectrum to zero that are more

than ST (dB) below the peak of the spectrum.

There are times when the time series simulator is used

without adding noise (e.g., when multiple simulated

signals are added together). The spectrum thresholding

in that case could be skipped, a default value could be

used that is set based on the expectedmaximum SNR, or

the user could pass the expected SNR (an SNR hint) to

the simulator. For these simulators, the SNR hint was

chosen to give the most flexibility, but the effect is not

seen in the figures since an SNR of 100dB is used

throughout. Furthermore, the thresholded values are set

to zero, but the processing in later steps will need to

recognize the zeros in the spectrum to avoid simulating

unnecessary data.

The spectral threshold also leads to a change in step

2-SP for the SP simulator: the step when the spectrum is

calculated. The original step 2-SP includes an integer

factor that is used for aliasing the spectrum. Instead of

using a fixed factor, the spectral threshold can be utilized

to determine how much the spectrum needs to be ex-

tended before calculating the aliased spectrum, since the

spectrum needs to be computed only ST (dB) below the

spectral peak. This ensures that the spectrum is accurate

and also that unnecessary values are not computed. The

effect of the spectral threshold on the accuracy of the

autocorrelation and the PSD will be assessed in

section 4.

c. Using a partial DFT to improve efficiency

This subsection focuses on steps 4–6 from the simu-

lator outline: multiplying simulated white noise variates

by the amplitude spectrum, performing an inverse DFT

to produce time series data, and returning M samples

per realization. In general, it seems like the inverse DFT

(using the FFT algorithm) would be the fastest way to

transform the data from the frequency domain to the

time domain, but there are a few reasons why a partial

DFT can improve performance in some cases. The first is

that only M samples of data are needed for each re-

alization, but MS samples are computed from the full

inverse DFT. The normal process is to return the firstM

samples as described in step 6. If the inverse DFT is

implemented using an inverse DFT matrix, then we can

return the firstM samples by using only the firstM rows

of the matrix. Even though matrix multiplication is

normally slower than an FFT, this can reduce the num-

ber of computations significantly in cases of narrower

spectrumwidths. Another way that a partial DFT can be

faster is by multiplying the white noise by the amplitude

spectrum in one step rather than the two steps needed

for an FFT. In the simulator outline, each length–MS

realization of the white noise is multiplied by the am-

plitude spectrum before the inverse DFT is performed,

since it is normally implemented with an FFT instead

of a DFT matrix. With the partial inverse DFT matrix,

we can multiply each row of the matrix by the amplitude

spectrum to produce the same effect.

It may be easier to see this with an equation. The

matrix of white noise N that is used in step 4 is MS 3 R,

where R is the number of realizations. For the full in-

verse DFT using an FFT algorithm, every column ofN is

multiplied by the amplitude spectrum, which is MS 3 1

in this case. Then, the full inverse DFT is computed for

each column. With the inverse DFT matrix, the inverse

DFT can be performed by multiplying byW*, whereW is

the MS 3 MS DFT matrix and * signifies the complex

conjugate. Since matrix multiplication multiplies each

row of the first matrix by each column of the second

matrix (and then sums the products), the amplitude

spectrum can be applied by multiplying each row of

W* by the amplitude spectrum, which is 1 3 MS when

multiplying by rows instead of columns. If we call this

new matrix D, then the multiplication by the amplitude

spectrum and the inverse DFT can be implemented by

the matrix multiplication DN. This shows that the mul-

tiplication of the amplitude spectrum and the inverse

FIG. 7. Normalized PSDs computed from averages of 100 000 re-

alizations of the fixed-simulation-length version of the SP simulator

without a spectral threshold and with two fixed values: 25 and 135 dB.
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DFT can be implemented using a single-matrix

multiplication.

There are a couple of other modifications to this ma-

trix that can save additional time. The matrix D isMS 3
MS, but we are simulating only M samples. If we take

only the first M rows of D and multiply N by this new

M3MS partial DFTmatrix, we can directly produce the

M3Rmatrix of time series data. One last consideration

is to take into account the zeros in the amplitude spec-

trum and to avoid all of themultiplications and additions

with zeros. Remember that the amplitude spectrummay

have values set to zero from the spectrum threshold ST
that was previously discussed. If some of the values of

the amplitude spectrum are zero, we can remove those

columns from D without affecting the final result. Let
~D be theM3 ~MS matrix formed from the firstM rows of

D with the zero columns removed, where ~MS is the

number of nonzero values in the amplitude spectrum. In

the end, we can produce anM3 Rmatrix of time series

data by multiplying an ~MS3 R matrix of complex white

noise ~N by ~D. This minimizes the number of computa-

tions when using the DFT matrix, and it will be shown

in section 4 to be faster than the inverse FFT im-

plementation in many cases.

This new procedure replaces steps 4–6 in the simulator

outline with one new step:

4–6) Form the MS 3 MS matrix D by taking the

conjugate of the DFT matrix W and multiplying

each row by the amplitude spectrum that has

already been thresholded using ST. Make a new

M3 ~MS matrix ~D from the firstM rows ofD and the
~MS nonzero columns. Produce an M 3 R matrix of

time series data by multiplying an ~MS 3Rmatrix of

complex white noise by ~D.

This simulator will be validated in section 4 using a wide

range of simulation parameters. The runtimes will also

be compared to a version of the simulator that uses the

inverse FFT algorithm to determine which provides the

best performance. The next section explores the differ-

ences between the SP and AC simulators.

3. Comparing spectral and autocorrelation
simulators

As shown in the simulator outline, both SP and AC

simulators produce a spectrum in steps 2-SP and 2-AC,

respectively, that is then multiplied by white noise for

each realization. For the SP simulator, that spectrum can

be produced directly if there is an explicit function for

the spectral model. In contrast, the AC simulator pro-

duces the spectrum by computing the autocorrelation

function first and then using a DFT to transform the

autocorrelation to the frequency domain. Since there is

an explicit formula for a Gaussian signal in both the

spectral and autocorrelation domains, either type of

simulator can be used. Because of the relationship be-

tween the spectrum and the autocorrelation, it should be

possible to compute one from the other, and the results

should be the same. The top panel in Fig. 2 withM5 16,

ya 5 32m s21, and sy 5 0.5m s21 shows that this is not

always the case. Even though the simulation length MS

is different, there is another issue that affects the spec-

trum for the AC simulator.

The autocorrelation simulator used in Fig. 2 is de-

scribed in Frehlich and Yadlowsky (1994) and computes

the spectrum from MS values of the autocorrelation

function (described as the desired covariance). The only

restriction on the autocorrelation is that it is conju-

gate symmetric to ensure a real spectrum. Lags from

2ceil[(MS 2 1)/2] to floor[(MS 2 1)/2] of the autocor-

relation function are needed so that there are a total

of MS values when taking into account the conjugate

symmetry. This autocorrelation function will be com-

pared to the autocorrelation function calculated from

the directly computed spectrum using the SP simulator.

In Fig. 2, the simulation lengths are different for the AC

and SP simulators. To better compare them, we can use

the same parameters as in Fig. 2 but choose the same

simulation length based on the procedure described

earlier. This leads to a simulation length MS 5 95,

which requires lags from 247 to 47. Figure 8 shows the

magnitude of the two autocorrelation functions: one

computed as described in Frehlich and Yadlowsky

(1994) and the other by taking the inverse DFT of the

spectrum computed for the SP simulator. The auto-

correlations clearly do not match, which is the main

reason that the AC and SP simulator spectra do not

match in Fig. 2. Computing the autocorrelation only

from lags 247 to 47 truncates the autocorrelation

function. In order for the autocorrelation to match the

one from the SP simulator, more lags need to be com-

puted. The additional lags are aliased on top of the

originally computed lags and lead to the smoother au-

tocorrelation. The autocorrelation computed from the

spectrum can be closely approximated by calculating

the theoretical autocorrelation to 400 dB below the

peak and then aliasing the autocorrelation similarly to

the aliasing of the spectrum. Computing down to

400 dB seems to be necessary to approximate the

spectrum as closely as possible. This value was empir-

ically determined by testing a wide variety of signal

parameters.

The actual aliasing of the autocorrelation function is

nearly identical to the aliasing of the spectrum. Re-

member that before using the DFT to compute the
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spectrum, the lag-0 autocorrelation needs to be the

first element of the autocorrelation array. In this

implementation, the original autocorrelation array

is computed with the lags from 0 to M 2 1, so the lag-

0 correlation is in the correct position. Next, the

lags from 2M to 21 are computed and added to

the original array. Based on the 400-dB threshold, the

process is continued for the next M lags in both the

positive and negative directions until the smallest

computed autocorrelation is less than the threshold.

Each set of computed autocorrelations is added to

the array.

The spectra produced from the three approaches

(directly computed spectrum, truncated autocorrela-

tion, and aliased autocorrelation) are shown in Fig. 9.

The spectrum that is directly computed by the

SP simulator is the most accurate. The spectrum

produced from aliasing the autocorrelation (AAC)

matches the SP spectrum to more than 150 dB below

the peak. The spectrum produced from truncating the

autocorrelation (TAC) is accurate only to about 15 dB

below the peak. This is the main factor in the mis-

matched spectra from the top panel of Fig. 2. It should

also be noted that the truncated autocorrelation did

not lead to a mismatch when sy 5 4m s21 (the bottom

panel of Fig. 2). This particular effect occurs only

when simulating especially narrow spectrum widths,

but aliasing the spectrum addresses the problem for

any case. Because of the extra DFT and the less ac-

curate spectrum, it is recommended that the SP sim-

ulator be used in most cases. The results should be

nearly identical as long as the SNR is not larger than

about 125 dB, but the extra DFT takes a small amount

of additional time and could have an effect on per-

formance when the number of realizations is small.

One reason to use the AC simulator is when there is an

explicit equation for the autocorrelation but not the

spectrum.

The second step in the simulator outline needs to

change slightly to account for aliasing the autocorrelation:

2-AC) Compute the autocorrelation so that the

smallest value falls below a specific threshold;

400 dB below the peak is recommended. Alias the

autocorrelation to length MS. Calculate the DFT

of the autocorrelation to produce the aliased

spectrum.

We now have the necessary modifications to the simu-

lator outline for the new simulators.

The final steps that incorporate all three modifications

and the aliasing of the autocorrelation are given below:

Inputs: desired number of samples M, signal power

SdB (dB), radial velocity y, spectrum width sy, SNR

(if noise added), maximum unambiguous velocity

ya, and number of realizations R

1) Set the simulation length MS 5max(2k1 1,

M1 k), where

k5 ceil

"
y
a

ps
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log(10)

5
A

T

r #
.

The autocorrelation threshold is calculated as

FIG. 8. Comparison of the TAC function from the original ver-

sion of the AC simulator to the autocorrelation function computed

by taking the inverse FFT of the spectrum computed for the SP

simulator.

FIG. 9. Computed spectra from three different simulators: SP

simulator with the spectrum calculated directly, AC simulator with

TAC, and AC simulator with AAC.
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for a Gaussian spectral model.

2-SP) Calculate the spectrum directly using a for-

mula or other method. Compute spectrum values on

an extended Nyquist cointerval (from 2nya to nya),

where n is an integer factor based onthe spectral

threshold ST. Alias the extended spectrum to

produce a spectrum on the desired Nyquist cointerval

(from 2ya to ya).

2-AC) Compute the autocorrelation so that the

smallest value falls below a specific threshold; 400 dB

below the peak is recommended. Alias the autocor-

relation to length MS. Calculate the DFT of the

autocorrelation to produce the aliased spectrum.

2.5) If the SNR is defined, set ST 5 SNR 1 35;

otherwise, set ST to a default value (e.g., 135 dB).

Set all values in the spectrum to zero that are more

than ST (dB) below the peak of the spectrum.

3) Appropriately scale the spectrum (PSD) to

obtain the desired signal power and to adjust for the

power of the simulated white noise in step 4. Take the

square root of the PSD to produce the amplitude

spectrum (frequency response).

4–6) Form the MS 3 MS matrix D by taking the

conjugate of the DFT matrix W and multiplying each

row by the amplitude spectrum that has already been

thresholded using ST. Make a new M 3 ~MS matrix ~D

from the first M rows of D and the ~MS nonzero

columns. Produce an M 3 R matrix of time series

data by multiplying an ~MS 3 R matrix of complex

white noise by ~D.

7) Add the desired level of white noise if necessary.

Output: V (M 3 R matrix of time series data)

In the next section, the accuracy and performance of

these new, modified simulators will be compared to the

fixed-simulation-length SP and AC simulators.

4. Validating the new simulators

To validate the accuracy of the new simulators and to

compare their performance, two versions of the new

simulators will be compared to the fixed-length simula-

tors from Figs. 1 and 2. The first is an SP simulator using

all of the approaches described in section 2, including

the partial DFT matrix approach; this simulator will be

referred to as SP-DFTM. The second simulator is an AC

simulator using the first two approaches in section 2 and

the autocorrelation aliasing from section 3, but the DFT

is computed using an FFT algorithm instead of the

partial DFT matrix. This will be referred to as AC-FFT.

One minor change with the AC-FFT simulator is that

the simulation length is increased to the next largest

multiple of four to take advantage of fast FFT algo-

rithms. Testing shows that FFT lengths that are multi-

ples of four lead to more consistent runtimes. The

SP-DFTM and AC-FFT simulators allow the valida-

tion of both the spectral and autocorrelation approaches

and also a runtime comparison between the partial DFT

matrix and FFT methods. The effect of the single addi-

tional DFT in the AC-FFT simulator is negligible when

looking at large numbers of realizations. Figure 10

shows the average autocorrelations and PSDs com-

puted from 100 000 realizations of both simulators for

the parameters shown in the top panels of Figs. 1 and 2

(M 5 16, ya 5 32ms21, and sy 5 0.5m s21). The new

method for computing the simulation length results in

very good accuracy for both of the simulators; the au-

tocorrelations and PSDs match the desired ones closely.

The spectral threshold does not seem to affect the

accuracy as predicted. Setting the spectral threshold

to a value 35 dB larger than the SNR is sufficient in

these tests to match the accuracy of the unthresholded

simulator.

To more comprehensively test both the SP-DFTM

and AC-FFT simulators, a simulation was run using a

wide variety of sample lengths and spectrum widths to

test the simulators under different conditions. Four

sample lengths were chosen, M 5 [4, 16, 64, 1024]; this

includes some commonly used values [16, 64] and a

couple of extreme values [4, 1024]. Eight spectrumwidths

were chosen, sy 5 [0.125, 0.25, 0.5, 1, 2, 4, 8, 16], with

a maximum unambiguous velocity ya 5 32ms21. Thus,

the normalized spectrum widths that were tested are

syn 5 [1/256, 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2]. The

spectral and autocorrelation simulators with fixed sim-

ulation lengths MS of 3M and 2M, respectively, were

implemented based on the original simulator outline.

These simulators will be referred to as SP-3M and

AC-2M, respectively. An additional simulator, AC-3M,

was included to show the errors from the truncated au-

tocorrelation that were described in section 3. By using

the same fixed simulation length, 3M, for both the

SP-3M and AC-3M simulators, the differences are only

from the truncation of the autocorrelation and not the

difference in the simulation length.

Each of the five simulators was run 100 times with

50 000 realizations to compute mean squared error

(MSE) values, and runtimes were computed for all of

the simulators except the AC-3M simulator. The run-

time of the fixed-simulation-length simulators is almost

completely dependent on the fixed simulations’ length.

The runtimes were also calculated for 100 simulation

runs with 1000 realizations to see whether the runtime
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results change with fewer realizations. To get the final

plotted MSE value, an MSE estimate was computed for

each autocorrelation and PSD with respect to the de-

sired autocorrelation or PSD measured in decibels to

allow for the smaller values to be taken into account.

The desired autocorrelation was set to250dBwhen any

of the values were at least 250dB below the peak to

keep the MSE from being too large, since the measured

autocorrelations do not drop off like the theoretical

autocorrelation. The desired PSDwas not truncated, but

the SNR was used to calculate a spectrum that includes

the noise floor. A Chebyshev window with 150-dB

sidelobes was also used when computing the desired

PSD. The 100 calculated MSE estimates for each set of

parameters were then averaged to get a finalMSE value.

Because of the way the MSE values are computed, they

are not very useful in an absolute sense, but the method

does seem to be sensitive to relatively small differences,

even for extremely tiny values.

To validate the accuracy of the simulators, two ad-

ditional simulators were included. The first simulator

utilizes longer simulation lengths: either 1.25 times the

MS value computed for the SP-DFTM and AC-FFT

simulators or MS 1 25, whichever is greater. This

simulator uses an upper bound for the simulation

length and is called Baseline-UB. The spectral thresh-

old was not used, and the FFT algorithm was utilized

to produce the time series. If the simulator errors for

SP-DFTM and AC-FFT match the Baseline-UB sim-

ulator, then the value of MS should be sufficient, and

the use of the spectral threshold should not affect the

accuracy. The comparison to the Baseline-UB simula-

tor validates that the computedMS is sufficient, since a

simulation with a significantly longer simulation length

does not result in smaller errors, but a successful test

does not show thatMS is as small as possible. For this, a

lower-bound baseline simulator was used. This simu-

lator utilized shorter simulation lengths: either 0.9

times the MS value computed for the SP-DFTM and

AC-FFT simulators or M, whichever is larger. This

simulator is called Baseline-LB. If the simulator errors

for SP-DFTM and AC-FFT match the Baseline-LB

simulator, then the simulation length could be shorter

than one computed using the autocorrelation thresh-

old. We expect to see larger errors from Baseline-LB,

which will verify that the simulation length is close to

being as short as possible. The simulators were run

using MATLAB with double-precision output. The

processer was an Intel Xeon E5-2630 with 64GB of

RAM. The performance could vary significantly on

different processors, but this configuration is reason-

able for showing the performance with a modern CPU.

Figure 11 shows the error results of the simulation

for the five simulators previously mentioned (AC-FFT,

SP-DFTM, AC-2M, AC-3M, SP-3M) and also includes

the baseline simulators (Baseline-UB, Baseline-LB) for

comparison. The AC simulator results are depicted

in red and the SP results in blue. The AC-FFT and

SP-DFTM simulators are displayed using solid lines,

while the fixed-parameter simulators are displayed with

FIG. 10. Normalized autocorrelations and PSDs computed from

averages of 100 000 realizations of the SP-DFTM and AC-FFT

simulators with the same parameters as the top panels of Figs. 1

and 2 (M 5 16, ya 5 32m s21, and sy 5 0.5m s21).
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dashed or dotted lines. The baseline simulators are de-

picted with black lines with the UB simulator solid and

the LB simulator dotted. The rows correspond to the

four values of M. The first column shows the MS for all

seven simulators. For smallM, the calculated simulation

length is significantly longer than the fixed simulation

lengths (2M or 3M) at narrow spectrum widths. For

large M, the calculated simulation length is shorter.

FIG. 11. Simulation lengths and errors for the SP-DFTM,AC-FFT,AC-2M, AC-3M, and SP-3M simulators alongwith errors for the two

baseline simulators, Baseline-UB and Baseline-LB. Each row corresponds to a different value ofM (4, 16, 64, and 1024). (left) Simulation

length. MSE (dB) for the (center) autocorrelation and (right) PSD.
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The curves for the baseline simulations have a similar

shape to the curve for the calculated simulation length

but are shorter (Baseline-LB) and longer (Baseline-UB)

as expected. The second and third columns show the

accuracy of the autocorrelation and PSD, respectively,

in terms of MSE (displayed in dB).

The fixed-simulation-length simulators—SP-3M, AC-

2M, and AC-3M—have significantly larger errors than

the Baseline-UB simulator for M 5 4, 16, and 64. The

accuracy issues affect most of the spectrum widths at

M 5 4 but fewer spectrum width values as M increases.

This is consistent with the behavior of the simulation

length plots in the first column. The fixed-simulation-

length simulator accuracy matches the parameter-based

simulators at the largest value of M 5 1024, since the

simulation lengths are all larger than the ones computed

for the parameter-based simulators. The SP-3M simu-

lator autocorrelation accuracy is similar to or slightly

better than the AC-2M and AC-3M simulators. There

is a slight anomaly where the AC-3M estimator is less

accurate than the AC-2M estimator in some cases. We

did not track down the cause of this, since both estima-

tors are inaccurate in those cases. The accuracy results

for the PSD are similar to the autocorrelation results.

Because the autocorrelation is truncated for the AC-2M

simulator, the PSD errors are significantly greater than

for the fixed-length SP-3M simulator. The AC-3M sim-

ulator errors are closer to the AC-2M simulator than the

SP-3M simulator, which shows that the truncation of the

autocorrelation really is the main factor in the increased

errors. The SP-DFTM and AC-FFT simulators are sig-

nificantly more accurate than the fixed-parameter sim-

ulators, and for all of the cases except for the PSDMSE

panel with M 5 1024, the MSE curves are on top of the

MSE curves for the Baseline-UB simulator. In the M 5
1024 case, the PSD accuracy values are nearly the same

for all seven of the simulators. The SP-DFTM and AC-

FFT simulators appear to be just as accurate as the

Baseline-UB simulator. The Baseline-LB simulator has

larger autocorrelation errors than both the SP-DFTM

and AC-FFT simulators for at least some spectrum

widths for all values of M. The errors are only slightly

larger for the PSD at M 5 4, again showing that the

autocorrelation is more sensitive to the simulation

length. These results clearly show that the calculated

simulation length is nearly as short as possible. The only

time that the Baseline-LB errors are approximately the

same is when both the calculated simulation length and

the simulation length for Baseline-LB are near M.

Figure 12 shows the average runtimes for the SP-3M,

AC-2M, AC-FFT, and SP-DFTM estimators. The first

and second columns show the runtimes for 1000 and

50 000 realizations, respectively, leaving out the AC-3M

simulator and the two baseline simulators. The average

runtimes were calculated using a trimmedmean using the

central 50 values of the 100 sorted values for the 100

simulator runs. A trimmed mean was used to avoid any

outliers in the runtimes. The SP-DFTM and AC-FFT

simulators were faster at all spectrum widths for M 5 64

and 1024. The fixed-length AC-2M simulator is consis-

tently faster than the SP-3M simulator because of the

difference in the fixed simulation length. ForM5 16, the

SP-DFTM simulator is faster than the fixed length simu-

lators, but the AC-FFT simulator is significantly slower

for narrow spectrum widths. For M 5 4, the SP-DFTM

simulator has comparable runtimes to the fixed-

simulation-length simulators and is considerably more

accurate (as shown in Fig. 11). The AC-FFT simulator is

again slower at narrow spectrum widths. The AC-FFT

simulator is faster onlywhenM5 1024 and the number of

realizations is 1000 or at large spectrum widths when the

number of realizations is 50 000. In the M 5 64 case with

50000 realizations and a spectrumwidthsy 5 2ms21, the

SP-DFTM simulator takes 0.25 s, the AC-FFT simulator

0.31 s, the AC-2M simulator 0.56 s, and the SP-3M simu-

lator 0.72 s. This is a set of parameters where all four

simulators accurately match the autocorrelation and

PSD. The SP-DFTM simulator is more than twice as fast

as the AC-2M simulator and almost 3 times as fast as the

SP-3M simulator. For most simulations, the SP-DFTM

simulator is the fastest and most accurate and is recom-

mended for a wide range of signal parameters.

There is a case that is not adequately addressed with

the previous validation. There are times (e.g., when

simulating a realistic weather profile) when only one or

two realizations for a particular set of parameters are

needed. In this case, the extra steps to compute the DFT

matrix may cause the simulator to be less efficient than

in cases with 1000 or 50 000 realizations. Figure 13 shows

the runtimes for three different simulators: two that

have already been introduced, SP-DFTM and AC-FFT;

and a third, SP-FFT, that uses the threshold approaches

from section 2 but uses the inverse FFT algorithm in-

stead of a partial inverse DFT matrix. This simulator

should be slightly faster than the AC-FFT simulator for

small numbers of realizations because the single DFT is

not utilized to produce the amplitude spectrum. To test

under varying conditions similar to a realistic weather

profile, the simulators were run with 1000 different sets

of parameters, with 1–1000 realizations for each set. The

total runtimes for all 1000 sets of parameters with

varying number of realizations are plotted in Fig. 13. As

predicted, the FFT simulators were faster for smaller

numbers of realizations, but the SP-DFTM simulator

becomes faster around 500 realizations. The SP-FFT

simulator is about 2% faster on average than the
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FIG. 12. Average runtimes for the AC-FFT, SP-DFTM, AC-2M, and SP-3M simulators. (left)

Average runtime (s) for 1000 realizations, and (right) average runtime (s) for 50 000 realizations. The

rows correspond to different values of M (4, 16, 64, and 1024).
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AC-FFT simulator over the studied range. Based on

these times, the SP-FFT simulator should be used when

simulating small numbers of realizations, and the SP-

DFTM simulator should be used when simulating larger

numbers of realizations. The code for the simulators

used in this section is available on the MATLAB File

Exchange website under the name WR-TSS.

5. Additional considerations

In addition to modifying the simulators, there are a

couple of other options that can improve the perfor-

mance of time series simulations. The first is using

single-precision values when possible. Single-precision

floating point numbers are more than sufficient for most

weather simulations and lead to a 20% performance

improvement compared to double-precision floating

point numbers in MATLAB. If a large number of re-

alizations are needed, using a graphical processing unit

(GPU) can also boost performance. Using single pre-

cision can make even more sense when using a GPU

because many commercial GPUs that are not made

for scientific applications have significantly faster single-

precision performance but only marginally better

double-precision performance.

Figure 14 shows the average runtimes and the auto-

correlation and PSD errors for the SP-3M, AC-2M, and

three versions of the SP-DFTM simulator. These three

versions include the original double-precision version, a

single-precision version, and a single-precision ver-

sion that is optimized for a GPU. The 20% speedup

from using single precision alone is apparent, but the

biggest gains come from using the GPU. For these

tests, a GeForce GTX TITAN Black GPU was utilized.

The single-precision GPU version of SP-DFTM is

4–5 times faster than the single-precision version. If

wegobackand compare this to theoriginal fixed-simulation-

length versions, the single-precision GPU version is 12–16

times faster thanAC-2M and17–20 times faster thanSP-3M.

Of course, those simulators could also be sped up using

single-precision GPU versions, but the SP-DFTM

FIG. 13. Runtimes for varying numbers of realizations using 1000

different sets of parameters for the SP-DFTM, SP-FFT, and AC-

FFT simulators.

FIG. 14. (top) Average runtimes for the SP-3M, AC-2M, and

three versions of the SP-DFTM simulator with M 5 64 and 50 000

realizations. The (middle) autocorrelation and (bottom) PSDMSE

for the same set of simulators.
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simulator is accurate and faster already. The errors

of all of the SP-DFTM simulators are nearly the

same, which shows that using single precision or a

GPU does not affect simulator accuracy. The accu-

racy was also checked over the same wide range of

parameters shown in Figs. 11 and 12, and the simu-

lators are just as accurate for all of the cases. The

combination of the three modifications, single pre-

cision, and the GPU results in an accurate and fast

simulator that can decrease simulation runtimes

significantly. In some cases, a multiday simulation

could run in a few hours.

Because of the data movement from the GPU, the

GPU version is faster only for a large number of re-

alizations. It is clearly significantly faster for 50 000

simulations. With this particular combination of CPU

andGPU, theGPU version outperformed the non-GPU

version when the number of realizations was greater

than about 2000–3000 (depending on the spectrum

width). Performance is system dependent, but a single-

precision GPU version of the simulator may be the

fastest way to produce accurate weather radar time se-

ries data for a large number of realizations. The code for

the GPU versions of the SP-DFTM simulator is also

available on the MATLAB File Exchange website un-

der the name WR-TSS.

6. Conclusions

Three new modifications to the conventional

weather radar time series simulators were introduced

for improving accuracy and performance. Two of the

modifications use a threshold, one in the autocorrela-

tion domain and one in the spectral domain, to de-

termine the simulation length and to limit the spectrum

to only the values that are necessary to produce accu-

rate simulations. The third modification uses a partial

DFT matrix to calculate the inverse DFT instead of

using an inverse FFT algorithm. These three modifi-

cations lead to accurate simulations for a wide variety

of weather signal parameters, especially for narrow

spectrum widths. In many cases, the performance is

also significantly faster than traditional simulators with

fixed simulation lengths. Using single precision is an-

other way to speed up the simulators by about 20%, but

using a GPU is the best way to significantly reduce

simulation times. The single-precision simulators are

still accurate, and using single precision and a GPU

with the modified simulators results in fast and ac-

curate simulators when simulating large numbers of

realizations.

The previously described simulators were implemented

assuming a Gaussian spectral model, but the same ideas

could be applied to other spectral models. The key is de-

termining the thresholds that are appropriate for the par-

ticular spectral model that balances accuracy and

performance. For models that are similar to the Gaussian

model, the recommended values of AT and ST would

probably be a reasonable starting point. If the spectrum is

not produced using a formula (e.g., using a collection of

velocities to form the spectrum), it may be possible to es-

timate the spectrum width of the velocities and use that if

the spectrum is close toGaussian. This estimated spectrum

width could be used in step 1 to determine the simula-

tion length instead of the spectrum width from the

Gaussian model.

There are surely additional modifications for im-

proving performance while maintaining the accuracy of

time series simulators, but the modifications introduced

here are relatively simple and can be easily added to

currently implemented versions without a large amount

of additional complexity. One additional approach to

improving performance that could be explored is pro-

ducing more than one realization when the simulations

length MS is greater than 2M. This approach would be

applicable to the FFT versions of the simulators when

only the first M values are currently returned. The de-

cision about how independent these realizations need to

be would factor into the possible amount of performance

improvement. In general, it is important to preserve ac-

curacy when simulating time series data because you

never know when a new estimator or technique could

expose the inaccuracies of a particular simulator.
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